If it's not what You are looking for type in the equation solver your own equation and let us solve it.
33x^2-40x+12=0
a = 33; b = -40; c = +12;
Δ = b2-4ac
Δ = -402-4·33·12
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4}{2*33}=\frac{36}{66} =6/11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4}{2*33}=\frac{44}{66} =2/3 $
| 2x-3x+3=1 | | 5s+22s-10=15s-2 | | {-x×x}+2x+15={-2×(x×x)}+2x+13 | | D=6r+32 | | X*2+x/2=100 | | D=4.2r+32 | | 7r-5r+5=7r+5-r | | 2x-5-6=-15 | | 16y^2–8y=0 | | (8.5)×(-3)=a | | 2x+5+6=15 | | 12/5x=10/15x+2/3 | | 3x+89=8x+58=190 | | 1/5(4x-1)=2-3x+3/5 | | 3.4=100/x | | 7/2x-3=-17 | | 3x+5=4.5x | | 5n+5=2n-3 | | -143=2-5(5x+6)+2x | | -8x+14=27 | | 5a+13=3a+20 | | 72=4w-9 | | -143=u-93 | | Xˆ2+4x=480 | | 3/5m-8=(-23) | | (x)/(2x+2)=(-2x)/(4x+4)+(2x-3)/(x+1) | | 5(c-4)=5 | | x+x+x+x=120 | | 2-x-(x^2/2.4)=0 | | (3x-1)×(3x-3)=4×(9x²-1) | | p-p^2=0,21 | | 16+X=5x5 |